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ABSTRACT 

Let T be a triangulation of a quadrilateral Q, and let V he the set of 

vertices of T. Then  there is an essentially unique tiling Z --- (Zv: v E 

V) of a rectangle R by squares such that  for every edge ~u,v) of T the 

corresponding two squares Zu, Zr  are in contact and such tha t  the vertices 

corresponding to squares at corners of R are at the corners of Q. 

It is also shown that  the sizes of the squares are obtained as a solution of 

an extremal problem which is a discrete version of the concept of extremal 

length from conformal function theory. In this discrete version of extremal 

length, the metrics assign lengths to the vertices, not the edges. 

A practical algorithm for computing these tilings is presented and ana- 

lyzed. 

Figure 1: A triangulation and the corresponding tiling. 

* The author thankfully acknowledges support of NSF grant DMS-9112150. 
Received December 23, 1992 

97 



98 O. SCHRAMM Isr. J. Math. 

1. In troduct ion  

To give the background and motivation for this work we need to discuss packings 

first. 

PACKINGS. How does one describe the combinatofics of a packing? A combina- 

torial object associated with a packing is its contacts graph, defined as follows. 

Let the sets in the packing be indexed by a set V, P = (P~: v E V), then the 

contacts graph (or nerve) of P is the graph G = G(V, E) whose vertex set is V 

and a pair v ~ w E V are joined by an edge in E whenever Pu f3 Pw ~ 0. 

With this definition, the following question seems very natural. Given some 

graph G, and some geometric requirements on the packed sets, does there exists 

a packing with nerve G satisfying the requirements? The canonical example is 

when all the packed sets are required to be geometric disks (of arbitrary sizes) in 

R 2. One sees immediately that the contacts graph of such a packing is a planar 

graph. The circle packing theorem tells us that the converse also holds: if G is a 

finite planar graph, then there is a packing of disks in R 2 whose contacts graph 

is G. This elegant result was first proved by P. Koebe [6] as a consequence of 

his theorem that every finitely connected planar domain is conformally equiva- 

lent to a circle domain. Later, the circle packing theorem was rediscovered by 

W. Thurston [16], who also conjectured that a sequence of maps which he con- 

structed using circle packings converges to the Riemann map from a given simply 

connected domain to the unit disk. This conjecture was proved by B. Rodin and 

D. Sullivan [10], giving a second connection between combinatorially specified 

circle packings and conformal maps. 

In previous works, the present author has generalized the circle packing theo- 

rem in various ways ([111, [121, [131) , and the following theorem is a special case 

of a result in [13]. 

1.1 PACKING THEOREM: Let G = (V,E) be a finite planar graph, and let 

(P~: v ~ V) be a collection of smooth (C 1) closed topological dis/~s in R 2 in- 

dexed by the vertices of G. Then there is a packing Q = (Qv: v q V) with 

contacts graph G such that each Q~ is positively homothetic to P~ (v E V); that 

is Q~ = a~P~ + b~, where a~ > 0 and b~ E R 2. 

The proof of this result is based on a conformal uniformization theorem of 

M. Brandt [1] and A. Harrington [5]. 

When one takes all the sets P~ to be geometric disks one obtains the circle 
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packing theorem. The case of circles being well studied (for some references to 

the growing bibliography see, for example, [13]), it seems to be of some interest 

to investigate other special situations. It was Thurston who suggested to the 

author to investigate the case where the sets P~ are squares. 

At first sight, it may seem that Theorem 1.1 does not apply here, since squares 

are usually not smooth. But one may take smooth sets which approximate the 

squares, obtain for them the desired packing, and then try to take the limit. 

There are basically two things which can go wrong in the limit. First, some new 

contacts may occur, and then the contacts graph will include G, rather than be 

equal to G. Second, some of the sets may degenerate to points. There are some 

tools, namely boundary conditions, that enable one to make sure that "enough" 

of the sets do not degenerate so that the limit packing will not be "trivial". An 

example of such a limiting argument can be found in [11]. 

What makes the case of squares especially interesting? If P is a packing of 

squares with edges parallel to the coordinate axis, and if the contacts graph of 

P is a triangulation, then the packing is actually a tiling. This follows from the 

following easy observation which shows that there will be no "gaps" between the 

squares. 

1.2 OBSERVATION: Let P~, Pb, Pc be three rectangles whose edges are parallel to 

the coordinate axis. Suppose that the intersection of every two of these rectangles 

is nonempty. Then P~ N Pb ~ Pc # 0. 

SQUARE TILINGS. The famous paper by Brooks, Smith, Stone and ~I~tte [2] 

studied square filings of rectangles. Their emphasis was on perfect filings, in 

which the sizes of the squares are all distinct, and they managed to construct 

nontrivial perfect square filings of a square. They define a correspondence be- 

tween square filings of rectangles and planar multigraphs (graphs with possible 

multiple edges) with two poles, a source and a sink, and view the multigraph 

as a network of resistors in which electricity is flowing. In their setup, a vertex 

of the graph corresponds to a connected component of the union of the hor- 

izontal edges of the squares in the tiling, and one edge appears between two 

such vertices for each square whose horizontal edges lie in the corresponding 

connected components. Thus the graph only describes the down-up contacts be- 

tween the squares, in contrast with the contacts graph. Our correspondence below 

graph ~ square tiling is very different. 
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We now prepare to state our basic theorem. Let D be a closed triangulated 

topological disk, and denote the sets of vertices, edges, and faces of the triangula- 

tion by V, E and F,  respectively. Let aD = B1 U B2 U Bs U B4 be a decomposition 

of aD into 4 nontrivial ares of the triangulation, in cyclic order. That is, each 

B i is a nonempty connected union of edges of the triangulation, and Bi N Bk 

is empty if k = ] + 2 and consists of a vertex of the triangulation if.k = j + 1 

or ] = 1, k = 4. The collection T = (V ,E,F;B1,B2,Bs ,B4)  will be called a 

t r i a n g u l a t i o n  o f  a quadr i la tera l .  

We will prove the following theorem. 

1.3 THEOREM: Let T = (V, E, F; B1, B2, Bs, B4) be a triangulation of a quadri- 

lateral  Then there is an h > 0 and a square tiling Z = (Z~: v 6 V) of the 

rectangle R = [0, h -1] x [0, h] such that 

(1.1) Zv N Z ,  # 0 whenever (v, u) 6 E. 

Moreover, let R1,R2,Rs,R4 be the bottom, left, top, and right edges of R, re- 

spectively. Then it can also be required that for each ] = 1, 2, 3, 4 we have 

n Ri # 0 whenever e Bi. 

Under these conditions, the number h and the tiling Z axe uniquely determined. 

Note that we allow the possibility that some of the squares degenerate to points, 

as is the ease for the tiling in Figure 1. (There are some situations where this can 

be ~ruled out; see 10.1.) Also, the contacts graph of the tiling may contain some 

edges in addition to those in E, but the corresponding intersections of squares will 

consist of only single points. These 'unpleasant degenerations' are consequences 

of the fact that squares are not smooth. 

The existence part of Theorem 1.3 can he obtained from [11], [12], or [13], 

and uniqueness can be proven with some modification of the method of [8]. Our 

intention here is to give a new elementary proof. This approach also yields a 

practical algorithm for computing the tilings, and, in the author's view, gives 

insight into their structure. 

The proof shows that the sizes of the squares are solutions to a certain extremal 

problem, 'discrete extremal length'. Extremal length is a central tool in the 

study of conformal and quasiconformal maps [7]. R. Duffln [4] has introduced a 

discrete notion of extremal length on graphs. However, the notion we use is due 
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to J. W. Cannon [3], and is distinct from Duirm's in that lengths are assigned to 

vertices, rather than to edges. 

Theorem 1.3 and some of the results below were independently proved by 

Walter Parry, and foUow from his [9]. Parry also uses Cannon's discrete extremal 

length. 

In Section 2 we will introduce the continuous notion of extremal length, for 

background. Section 3 defines Cannon's discrete extremal length, and gives a 

simple existence and uniqueness result for extremal metrics. Section 4 will show 

that square tilings yield extremal metrics, while Section 5 will do the converse. In 

Section 6 the duality properties for extremal length are indicated. An algorithm 

for computing square tilings is presented and analyzed in Section 7. Section 8 will 

discuss filings by rectangles of specified aspect ratios; most of the theory carries 

through. In Section 9 we consider extremal length in arbitrary connected graphs, 

not necessarily planar. Finally, Section 10 consists of some concluding remarks, 

about degeneracies in tilings, about periodic filings, and about non convergence 

to the Riemann map. 

2. E x t r e m a l  length 

Our basic tool is a discrete version of extremal length. We now recall the con- 

tinuous notion (see also [7]), not because we rely on it in the following, but only 

to put our arguments in perspective. 

Let Q = Q(B1,B2,Bs,B4) be a quadrilateral in R 2. This means that Q is a 

closed topological disk, and that 0Q consists of the 4 distinguished interiorwise 

disjoint arcs B1,B2,Bs,B4, in positive order. Let r be the collection of all 

rectifiable paths in Q which connect B1 to Bs. Define a (conformal) metric m to 

be a (Borel measurable) nonnegative function on Q. The area of m is defined by 

area(m) =/Q m 2 dz dy = Ilmll 2. 

(Wherever we use I1" II, we will mean the L 2 norm.) Let 7 be a rectifiable curve 

in Q, then its m-length is defined as 

ira(7) ---- ~ m IdTI, 

and I,,,, the length of m, is defined as the m-distance from B1 to Ba; that is, 

Im= inf/,n(7). 
7EF 
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The e x t r e m a l  l eng th  of Q is then defined as 

L(Q) = sup 
m IImlP'  

where the supremum is taken over all conformal metrics with nonzero area. A 

metric/.12 realizing the supremum is called an extremal metric. 

The main point about the extremal length is that it is invariant under maps 

which are conformal in interior(Q). More specifically, let f :  Q --, Q* be a confor- 

mal map between quadrilaterals, and let m* be a conformal metric on Q*, then 

lra = Ira* and ]]/'1211 = IIm*ll, where re(z) = If'(z)l/.12*(f(z)). (Here, of course, l,,,. 

and IIm*ll refer to the quadrilateral Q*.) It turns out that when Q* is a rectangle 

the extremal metrics are just the positive constants. Since every quadrilateral Q 

is conformally equivalent to some rectangle, this means that the extremal metrics 

for Q are of the form re(z) = If'(z)l, where f is a conformal homeomorphism to 

a rectangle. To put it differently, If'(z)l is given as a solution of an extremum 

problem. 

We shall see that the problem of tiling a rectangle by squares with prescribed 

combinatorics is in a limited sense a discrete analog of the problem of finding 

a conformal map from a given quadrilateral to a rectangle: the sizes of the 

squares wiU be obtained from a "discrete extremal metric". In another paper 

[14] the author applies similar ideas, but in the continuous setting, to the study 

of conformal uniformization of multiply connected planar domain. 

3. Discrete extremal length 

We now introduce Cannon's concept of extremal length on a graph. As mentioned 

in the introduction, this notion of discrete extremal length is special in that  the 

metrics give sizes to vertices, rather than to edges. 

Let G = (V, E) be a finite connected graph, and let A, B be subsets of V. A 

path in the graph is a sequence (v0, v l , . . . ,  v,)  of vertices such that (Vi_l , vi) E E 

for j = 1 , 2 , . . . , n .  A nonnegative function /.12: V ~ [0, oo) will be called a 

(discrete) me t r i c  on G. Given a path 7 = (v0,Vl, . . . ,  vn) and a metric m, we 

define the m-length of 7 to be 

Tt 

lm('y) = Z/'12(vi)" 
j=0 
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Note that  a shortest path from a vertex v to itself is the path (v), and its length 

is re(v). 
The (A, B) l eng th  of a metric m on G is defined as 

Im = inf/m(7), 
7 

where the infimum is over all paths 7 which start at A and end at B. The area 

of a metric m is just the square of its 2-norm: 

area(m) = HmH2= ~ m(v) 2, 
nEV 

and the no rma l i zed  l eng th  of m is defined as 

Ilmll 

Now, the e x t r e m a l  l eng th  of (G; A, B) is 

L(G; A, B) = sup l(m), 
m 

where the supremum is over all metrics ra of positive area. An e x t r e m a l  me t r i c  

for (G; A, B) is one which realizes this supremum. 

Note that  lain = alto when a is a positive constant. Therefore, l(ra) does not 

change if we scale ra by a positive constant factor. 

3.1 LEMMA: Let G , A , B  be as above. Then there is an extremal metric m 0 /or 

(G; A, B). It is unique, up to scaling. 

Proof." Let M1 be the set of all metrics m such that Im /> 1. Observe that  M1 

is a nonempty closed convex set. Therefore M1 has a unique element m0 of least 

norm. Let ml be any metric with Ira1 > 0. Then mi/lm, 6 M1, and the lemma 

follows by the scaling invariance of l~/Hml[ 2. | 

4. Square tilings give e x t r e m a l  me t r i c s  

Lemma 3.1 and the following lemma will imply the uniqueness part of Theo- 

rem 1.3. 
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4.1 LEMMA: Let T = ( V, E , F ; B1, Bz , Bs , B 4 ) be as ha Theorem 1.3, and suppose 

that h and Z satisfy all the requirements there. Let G = (V, E) be the 1-skeleton 

o fT ,  and let s(v) denote the edge length of the square Z~, for v 6 V. Then s is 

an extremal metric for (G; B1, B3). 

Proof." Let m be some metric on G of positive area. Let t 6 [0, h- l ] ,  let/3t be 

the hne {t} x R, and let 7t = {v 6 V: fit f3 Z~ # 0}. Then, obviously, 7t contains 

the set of vertices of a simple path from B1 to B3. Consequently, 

m(, , ) .  
vE'ct 

We integrate this inequality over t, to obtain, 

h-1 

h - i f "  <~ ft= ~ m(v)dt. 
0 vETt 

Each v E V is in 7t for t in an interval of length s(v). This enables us to rewrite 

the right hand side, and get 

h-alto <, y ~  s(v)m(v) <, Ilsllllmll . 
vEV 

Since the area of R is 1, it follows that Ilsll = 1, and it is clear that l, = h. 

Therefore, 
i ( , - , )  t, 

= ilmll-'-  = 
as required. | 

5. Extremal metrics give square tilings 

5.1 THEOREM: Let T = (V ,E,F;Bx,B2,B3,B4)  be a triangu/atJon of a quadri- 

lateral, and let G = (V, E) be the 1-skeIeton of T. Let rn be the extrema/metr ic  

for (G;Ba,B3) that satistles Ilmll = 1. Set h = Ira, R = [0,h -1] • [0,h], and for 

each v E V let 

(5.1) Z ,  = [z(v) - m ( 0 ,  z(v)] • [U(v) - m ( 0 ,  U(v)], 

where z(v) [respectively y(v)] is the least m-length of a path from B2 [respectively 

BI ] to v. Then Z = (Z~: v E V) is a square tiling of the rectangle R which satiss 

the contact requirements (1.1) and (1.2) of Theorem 1.3. 

Note that  each Z~ is a square of side length rn(v). 
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Proof." Suppose that (u, v) is an edge in T. Since a path from B1 to v can he 

obtained by appending the edge (u, v) to any path from B1 to u, it is clear that 

y(v) - m(v) ~< y(u). By symmetry, we also have y(u) - re(u) <<. y(v), and these 

two inequalities imply that [y(v) - re(v), y(v)] f3 [y(u) - re(u), y(u)] ~ 0. Since 

a similar argument shows that [x(v) - re(v), z(v)] N [x(u) - re(u), x(u)] # 0, we 

conclude that Z.  N Zu ~ 0. 

Now set R1 = {(z, 0): z/> 0}, R2 = {(0, Y): Y/> 0},/~a = {(z, Y): z /> 0, Y t> h}, 

and R4 = {(x, Y): x >/ h - i ,  Y /> 0}. It is dear  from the definition of Z~ that 

Z~ r3/~j # 0 when j = 1,2 and v E Bj.  The same also holds for j = 3,v E Ba, 

by the definition of h. We now need to work a bit to prove the same for j = 4. 

Let 7 be a path of least m-length which connects B2 and B4. For t />  0, set 

mr(v) = re(v) + t  for v in 7, and mr(v) = re(v), otherwise. Since every path 

from B1 to B3 must intersect 7, we have 1,,,, I 1,, + t. So D+(Im,) >/1, where 

D+ denotes the one sided derivative with respect to t, as t ~ 0. It is also easy to 

compute D+(IIm,112): 

D+(llmtll 2) = ~ D+ ((re(v) + t) 2) = ~ 2m(v) = 2/m(7). 
vE~, vE~, 

Since m = m0 is the extremal metric, we have 

/f l~, '~ IImlI2D+ (I~,) - l~D+ ([[mt[l 2) 
O >t D+[(mt) = D+ \llm, ] = Ilmll' 

We use our previous computations, and the normalization Ilmll = x, to get 

0/> D+ ( l~ , ) - l~D+ (llmdl ~) t> 21m- 21~l.,(~). 

Since l m =  h, this gives 1,,,(7 ) >/ h -1. By the choice of 7, this implies that 

Zv N / ~  # 0 when v q B4. 

We will now demonstrate that UvevZ~ D R, by showing that OR is homotopic 

to a constant in U ~ v Z ,  U (R 2 - interior(R)). For~convenience of notation, we 

assume that each triangular face (u, v, w) of T is parameterized by an equilateral 

triangle of side length 1, and that these parameterizations are compatible along 

the edges, in the obvious m~nner. (That is, we have a piecewise linear structure 

on T.) Therefore, for example, the notion of the center of a face or an edge is 

well defined. 

Define a map f :  T ~ U , e v  z , ,  as follows. For each vertex v e V choose f (v)  
to be some point in Z. ,  such that f (v)  E Rj whenever j = 1, 2, 3, 4 and v E Bj. 
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Here we use 1.2 for the vertices v at the corners, v E By ~ Bk, k - j  = • rood4. 

(It is clear that 1.2 applies, even though the "rectangles"/~i are not compact and 

some are degenerated.) We'll implicitly use 1.2 below. For each edge (u, v) E E, 

let p(~,~) be the midpoint of the edge, and choose f(P(~,v)) to be some point 

in the intersection Z~ f3 Z~. We also require that f(p(~,~)) E Ri if v, u E B i. 
For each triangular face (u, v, w) in T, let P(~,u,w) be the center of (u, v, w), and 

choose f(p(~,~,~)) to be some point in the intersection Z~ t3 Z~ N Zw. Let T* be 

the first barycentric subdivision of T; the triangular faces of T* have the form 

(u,p(~,~),p(u,v,w)). Now extend the map f to T by requiring it to be affine on 

each triangular face of T*. It is clear that there are no conflicts in the definition 

of f on the vertices and edges. It is also clear that f (T)  C U~evZ,, since for 

each face (u,p(,,,v),p(,,v,,,,)) of T* the three points f(u), f(P(,,,v)), f(p(,,,~,w)) are 

in Z~, and Z~ is convex. 

From the fact that f(u),f(p(~,~)) E Rj whenever u,v E Bj it follows that the 

restriction of f to 0T = B1 U B2 U B3 U B4 is homotopic to OR in R 2 -interior(R). 

(Just take H(p, t) = k(f(p), t), where k((x, y), t) = (rain(x, h -1 +t), min(y, h+t)), 
as a first homotopy, and then "stretch" H(p, 0) over OR.) Since 0T is homotopic 

to a constant in T, we see that OR is homotopie to a constant in U~ev z~ u 

(R 2 - interior(R)). This dearly implies that U~r Z~ D R. 

Now that we have established U~ev z~ D R, we recall that 1 = Ilmll 2 is the 

sum of the areas of the squares in Z. Since the area of R is 1, this implies that 

actually Uvev zv = R, that there are no overlaps of positive area among the 

squares, and that no square protrudes out of R. Thus, the proof of the theorem 

is complete. | 

Proof of Theorem 1.3: Existence follows from Lemma 3.1 and Theorem 5.1, and 

uniqueness follows from Lemma 4.1 and Lemma 3.1. I 

6. Duality 

Let T = (V, E, F; B1, B2, B3, B4) be a triangulation of a quadrilateral, and let m 

be a metric on the 1-skeleton G = (V, E) of T. By taking the tiling in Theorem 

5.1 and rotating it by ~r/2 we see that an extremal metric for (G; B1, Ba) is also 

an extremal metric for (G; B2, B4). Moreover, we have 

L(G; = L(c; B,) 
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We like to think of this phenomenon as "duality". Note that  duality is not only 

a consequence of our results, but also is evident in the proof of Theorem 5.1, at 

the point where it was shown that the m-distance from B1 to Bs is at least h -1. 

Actually, that was the only place where the fact that m is an extremal metric 

was used. 

Since the same metric is extremal for (G; B1, Bs) and for (G; B2,/34), it must 

also achieve the supremum for 

ImWm 
(6.1) 1 = sup 

m ll-q 

where Im [respectively win] denotes the least m-length of a path from B1 to B3 

[respectively ]32 to B4]. 

Duality enables us to easily get estimates for L(G; B1,Bs). Suppose that we 
have some metric m on G. Then the definitions give L(G; B~,Bs) i> l(m). On 

the other hand, we also have 

(6.2) L(G; B1, Bs) = L(G; B2, B,) -1 <~ Ilmll---- 2 
w ~ "  

7. The algorithm 

We now give an algorithm for computing an extremal metric for a triangulation 

of a quadrilateral T -- ( V, E, F; BI, B2, Bs,/34). It is clear that the square tiling 

can be easily obtained from the extremal metric. In general, the algorithm will 

only converge to an extremal metric, and will not halt. 

7.1 Algorithm: 

(1) Let 7o be a path connecting Bz and B4 with the fewest possible number of 

vertices, and let no be the number of vertices in 70. Set re(v) = 1/Vch-'ff for 

vertices v in 70 and re(v) = 0, otherwise. 

(2) Find a path 7 of least m-length from B~ to B4, let w,~ = Ira(7), and let n 

be the number of vertices in 7. 

(3) If w,.t, .  = Ilmll 2, then stop. 

(4) Let m*(.) = m(v) + 6 for vertices v in 7 and m*(v) = m(v) otherwise, 

where 
6 = Ilmll2 - l,,,w,,, 

nlm -- Wm 

(5) Replace m by m*/llm'II a n d  go  to  s tep  (2).  I 
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It is first necessary to check that the 6 in step (4) is not negative (to make 

sure that m* is a metric). This and other useful inequalities are established in 

the following lemma. 

7.2 LEMMA: Each time we reach step (4) in the algorithm we have 

(7.1) no', 
(7.2) 6 t> O, 

(llmll 2 - t,,,w,,,) ~ 
(7.3) l ( m  *) - ~(m) >1 {imllZ(nllmll2 _ w ~ )  >~ o. 

Proof." Assuming for the moment that (7.1) holds, we will demonstrate that (7.2) 

and (7.3) follow. By (6.1), the numerator in the formula for 6 is nonnegative. 

Using (7.1) and (6.1), we have l~ t> no I Ilmll ~/> n-q, , ,w, , .  The last inequality 

must actually be strict, since we just passes step (3). This then establishes (7.2). 

As in the proof of Theorem 5.1, since 8 t> 0 it is clear that l,~. t> Im + 6. On 

the other hand, we have Ilm*ll z = Ilmll 2 + 2win6 + n~ z. Thus 

l(m*) - l'(rn) >~ 
( t .  + 6) 5 

Ilmll z + 2w,~6 + n P  llmll 2' 

and after substituting in the value of 8 and simplifying, we get 

(llmll 2 - t , , ,w. ,)  2 

Ilmll2(nl[mll 2 - ~0~)" 

To check that this is nonnegative, it must be verified that nHmH 2 >1 win.2 Using 

(7.1) and (6.1), we get 

,~ow%~(m) n ~ / ~ / l l m l l  ~ ~,.~ <~ ~< ~< nllmll 2. 

This shows then that (7.1) implies (7.3). 

The proof of (7.1) will proceed inductively. For the base of the induction, when 

we reach step (4) for the first time, we have Im ---- no 1D, Ilmll 2 = 1, and therefore 

(7.1) holds. In the inductive step, since l(m)is the same as l(m') of the previous 

visit to step (4), the inductive assumption together with (7.3) of the last visit 

yield (7.1). This establishes the lemma. | 

A metric which satisfies l,,,wm = ][rnll 2 is extremal, and therefore, if the algo- 

ri thm stops, it stops with an extremal metric. Typically, however, it will not halt. 
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We now investigate the convergence of the algorithm to the extremal metric. Let 

M be the extremal metric for T with IIMII = 1, and let L = L(T) = i(M). Let 

re(j) be the metric m at the j - th  iteration of the loop in the algorithm (or the 

metric when the algorithm stops, if it stops before iteration j ) .  We shall prove 

the following. 

7.3 THEOREM: The algorithm converges to M, name/), m(j) ~ M as j ~ co. 
Moreover, the following estimates hold for j = 1,2, . . . .  

(7.4) I[M - m(j) l  [ ~< 4 V / - ~ / j ,  

(7.5) L - [(re(j)) ~ 8L2IVI/j, 

(7.6) L -1/2 - w,,,(i ) ~< 4[V[X/Z~,  

(7.7) ra in{1 Wm(Olm(o[i=j+l,j+2,..llm(i)ll 2 . ,2j)<<.3LIVI/j .  

Here IVI denotes the carclJnality of V. 

These four inequalities are various measures of the quality of convergence of 

the algorithm. Of these, the estimate (7.7) is the most geometric one: if one 

defines squares as in (5.1), but with a metric m which is not extremal, then 

x - w.d.,/ l lmll ~ measures the failure of the squares to tile the rectangle [0, Ira] • 
[0, win]. It is the proportion of the sum of the areas of the squares which is in 

overlaps or falls outside of that rectangle. Estimate (7.7) then means that the 

"best" metric among the metrics encountered in the first 2j steps will have a 

proportion of at most O(j -1) "wasted" area. 

Inequality (7.5) estimates how fast the normalized length of re(j) converges 

to the extremal length L, and inequality (7.6) estimates the dual convergence of 

win(j) tO the extremal length of the "rotated triangulation". 

It is clear that the left hand sides of the inequalities in 7.3 are all nonnegative. 

Proof." Set r(j) = [(m(j))/L. Since w~/l lml l  2 <. L -1, inequality (7.3) gives 

( 1 - ~ ) '  ( 1 - ~ )  2 (1 - ~'~-~) 2 
(7.8) r(j+ l ) - r ( j )  >. >>. >>. 

nL IvIz IVIL 

Since r(j) <~ 1, using (7.8) and ~/1 - e ~ 1 - e/2 it is easy to prove inductively 

that for every j 

(7.9) r ( j )  ~ 1 - 8LIVIJ -1. 
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This establishes (7.5). 

To prove (7.4), we note that M/IM and m(j)/l,,~U) both belong to the convex 

set of all metrics m such that lm >~ 1, and that M/lM is of least norm among 

that set. This implies that 

z~(, ~ .~>0, 

where �9 denotes the inner product. We therefore get 

re(j). M >1 l,~(j)/lM. 

Since IIMll = tlm(j)ll -- 1, using (7.9), this gives 

IIM - m(j)ll z = 1 - 2re(j) �9 M + 1 ~< 2(1 - l~(i)/IM ) = 2 (1 - v / ~ )  

<~ 2 (1 - ~/1 - 8LIVI/j ) <<. 16LIVI/j, 

and proves (7.4). 

The proof of (7.6) is straightforward: 

~--l/2--Wra(j) = WM--Wm(j) ~ IIM-m(j)lla <. v~lllM-m(j)ll~ <~ 4 1 V h / ~ ,  

by (7.4). 

Using (7.8), we have 

2j ( im(i)Wm(i) ~ 2 
1/> r(2j  + i ) />  r(j + 1) + E IWl-XL-X 1 ~ ] , 

i = j + l  

which implies 

l,~(i)w.~r LIVI(1 - r(j + 1)) ~< j2 rain 1 ~ ) i = j + l , . . . ,2j  <~ j 

This gives (7.7), and completes the proof. I 

To complete the discussion of the algorithm, we need to estimate the running 

time of one iteration of the loop. The only substantial computations there involve 

finding 7 and computing Im and Win. Thus, the question which faces us is: given 

a graph G = (V, E),  two sets of vertices A, B C V, and a metric m on G, how 

can we efficiently find a path from A to B of least m-length. This is very similar 
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to the problem of determining the shortest path between two nodes in a graph 

with edges of various lengths. Indeed, the algorithm given in [15, Chapter 31] 

for the latter task applies with only minor changes to our situation, and runs 

in O((ISl + IVl)log IVl) computation steps. Since the graph is planar in our 

case, we have ISl = O(IVl), and thus the loop in Algorithm 7.1 needs at most 

O(IVl log IVI) computation steps. We get the following 

7.4 COROLLARY: Let 0 < ~ < 1. Algorithm 7.1 can be used to compute an 

approximate square tiling for T with at most ~( total area) in overlaps or outside 

the "tiled" rectangle in 0(  ~ -I  IVI 2 log IVl) computation steps. 

Proof." Use the algorithm simultaneously to compute the tiling for T and for 

the rotated triangulation T* = (V, E, F; B2, B3, B4, B~). Since L(T) = L(T*) -~, 

the above estimate for the running time of a single loop of the algorithm and 

inequality (7.7) show that one of the two runs will produce the required approx- 

imate tiling in the stated time. Alternatively, one can abort the computation for 

T [respectively T*] once it is clear that L(T*) ~ 1/2 [respectively L(T) >1 1/2]. 
| 

Remark: In (7.8) we have bounded rt (the length of 7) by IVl. It seems reason- 

able that "usually" n will be approximately equal to IVY.  In such situations 

we expect a running time not worse than O(e -11Vl3/2 log IVl). R 

Remark: Suppose that Z = (Z.: v E V) is a tiling as in Theorem 1.3. A 

directed edge (v, u) E E is vertical  if the contact between Z~ and Zv is along 

the bottom edge of Z~ and the top edge of Zv. Let S T be the collection of vertical 

edges, and let G t = (V, ET). (It is a good exercise to show that L(G; B~, Bs) = 

L(GT;B1,Bs). ) Given GT, the tiling Z can be computed by solving a system 

of linear equations, using the methods of [2]. This means that it is possible to 

compute Z exactly in finite time by trying all possible GT, but that's clearly not 

practical. An efficient algorithm to calculate G T would be interesting. | 

8. Tilings by rectangles 

It turns out that all the results above can be easily generalized to tilings with rect- 

angles of specified aspect ratios. To obtain these generalizations, it is necessary 

to consider a slightly more general notion of discrete extremal length. 

Let T = (V, E, F; B1, B2, Bs, B4) be a triangulation of a quadrilateral, and let 

a: V ~ (0, oo) be some assignment of weights to the vertices. (These weights 
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will become the aspect ratios.) For any metric m: V ~ [0, co) on T define its 

o,-area Ilmll . by 

vEV 

Define the a-extremal length of T to be 

L, (T)  = sup l~ 
-llmll•' 

where the supremum is over all metrics of positive area. An a-extremal metric is 

one which achieves the supremum. As in 3.1, an a-extremal metric always exists, 

and is unique up to a positive scaling factor. 

We have the following generalization of Theorems 1.3 and 5.1. 

8.1  THEOREM: Let T = (V, E,  F;  BI, B2, Ba, B4) be a triangttlation of a quadri- 

lateral, and let a: V ~ (0, oo) be an assignment of weights to the vertices. 

Then there is a unique h and a unique tiling Z = (Zv: v E V) of the rectangle 

R = [0, h -1] x [0, hi such that the contact requirements (1.1) and (1.2) of Theo- 

rem 1.3 axe satis~ed and such that each Z,  is a "horizontM" rectangle with width 

to height ratio equal to a(v). This tiling is given by 

(8.1) Z,  = [ z ( v ) -  a(v)m(v), x(v)] x [ y ( v ) -  m(v), y(v)], 

where m is the a-extremM metric of T with a-area equa / to  1, x(v) is the least 

am-length of a path from B2 to v, and y(v) is the least m-length of a path from 

BI to v. 

I 
H- 
I 

Figure 2: A tiling with one wide rectangle. 
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Figure 2 shows a tiling corresponding to the same triangulation as in Figure 

1, but where one corner square is dictated to become a rectangle with width to 

height ratio equal to 4. 

The proof of 8.1 is a simple modification of our arguments in the previous 

sections. 

The algorithm for computing square tilings can also be easily modified to 

compute tilings with rectangles of specified aspect ratios, as follows. The path 70 

is chosen as a path between B2 and B4 of least a-length, and no is replaced by 

la(T0), the a-length of 70. The path 7 is chosen as a path of least am-length from 

B2 to B4, w,,, is replaced by l~m(7), n is replaced by 1~(7), and the norm H" II 

is replaced by II " Ila. The rest stays the same, and the analysis of the algorithm 

proceeds similarly. 

9. Extremal length in arbitrary graphs 

We have been mostly interested in geometric applications, but it seems worth- 

while to see how much of what we've done carries over to arbitrary graphs. 

Let G = (V, E) be a finite connected graph, and let A, B be subsets of V. For 

a metric m: Y ~ [0, ~ )  and a path 7, we denote as usual l,n(7) = :~'~re-t re(v), 
and let Im be the shortest m-length of a path from A to B. When the graph G 

is arbitrary, there is no special reason to use the 2-norm, and we'll maintain as 

much generality as seems appropriate. Let a > 0, and let a: V ~ (0, oo). Set 

and 

= 

vEV 

L~,~ L,,~(G; A, B) I~+~ = ---- sup . . ,  
,n Na,c,(m) 

nEU 

where the supremum extends over all metrics which are not identically zero. As 

usual, an extremal metric is one which achieves the supremum. 

Given a metric m and a vertex v E V, we let y,,,(v) denote the least m-length 

o f a p a t h  from A to v. For t  e R, let Vm(t) = {v E V: y,n(v)-m(v) ~<t < ym(t)}. 

It is clear that  Vm(t) separates A from B when t E [0, Ira). Finally, for a set of 

vertices U C V, let the m-dua l - l eng th  of U be defined by 
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and let 

l~ = i~f l: .(u),  

where the inflmum extends over all sets U C V which separate A from B. 

9.1 THEOREM: Let G, A, B, a, a be as above, and let m: V ---* [0, or be a metric 

which is not identically zero. 

(I) The extremal metric M for L~,~ exJsts, and is unique up to a positive 

scaling factor. 

(2) For al~ t e [0, IM) we have l~  = l~(VM(t)). 
(3) We have 

(9.1) t~zZ <<. go,~(m) 

(9.2) (l*)'+a-~ <~ L -1/~ , 
N.,a(m) 

with equality holding in both i f  m is extremal for L~,~,. Conversely, equa/ity 

in either of these implies that m is extremal. 

The inequality (9.1) is a generalization of (6.1), and inequality (9.2) is a gen- 

eralization of duality: The left hand side of (9.2) should be interpreted as the 

"normahzed dual length" of m. The reader may wish to figure out what geometric 

phenomenon (2) generalizes. 

Proof" The proof of (1) is the same as the proof of Lemma 3.1. (Note that for 

uniqueness it is necessary that a ) 0.) 

Let ml,m2: V --. [0,oo) be two metrics. We have 

(9.3) 

/ I m ~ .  

I. . , l~,  < tZ,(V.,,(t))dt 
Jt-----O 

.< ~ ~(~)m~(v)~'(~)" 
uEV 

=. N~,o(rnl)I/(l+') N~,~(m2) ~ 

where the second inequality comes from considering the contribution of each 

vertex v E V to the integral, and the third is an application of the HSlder 
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inequality. Taking m,  = m 2  = m in (9.3), we get (9.1). Also (9.2) is obtained 

from (9.3) by setting m~ = M and m2 = m. 

Now let U C V be a set which separates A from B, let t /> 0, and let Mr: V --, 
[0, co) be defined by Mdv ) = M(v)+t for v ~ U and Mdv) = M(v) for v ~ V - U .  

As in the computation in the proof of Theorem 5.1, it is easy to see that 

o D+ 

implies that IMI*M(U ) >1 Na,a(M), which means that equality holds in (9.1) when 

m is extremal. This also shows that equality holds in (9.2) for extremal m. 

Conversely, if equality holds in (9.2) for m, then equality must hold in (9.3) 

when m2 = m, ml = M. This implies that m is a scalar multiple of M, and 

is therefore extremal. Alternatively, the same conclusion can be obtained by 

showing that the metric which achieves the maximum of the left hand side of 

(9.2) is unique, up to a positive scaling factor. 

Using (9.2), it is easy to see that equality in (9.1) implies that m is extremal. 

Since lMl*M = No,~(M), comparing with (9.3), we see that I*M(VM(t)) = l*M 
holds for almost every t ~ [0, IM]. But for all tl ~ [0, IM) there is some t2 > tl 

such that VM(t) = VM(tl) for all t ~ [tx,t2). Thus statement (2) is verified, 

completing the proof. | 

10. Concluding remarks 

DEGENERACIES. It is quite possible that some squares in the tiling given in 

Theorem 1.3 will actually degenerate to points. Let T 1 denote the 1-skeleton of 

T. If there is a 3-cycle in T 1 (a dosed path of length 3) which is not the boundary 

of a triangle of T, then all the squares corresponding to vertices "inside" the cycle 

will degenerate to a single point. This can be shown either geometrically, using 

1.2, or by considering an extremal metric. 

We now investigate when degeneracies can occur. Suppose that some squares 

do degenerate. Let V0 be a connected component of the set of vertices which 

correspond to degenerated squares, and let OV0 be the set of all vertices which 

are not in V0 but  which neighbor with V0. All the squares Z,,,v E Vo must 

be the same point, and Z .  must contain that point for every u E aV0. Since 

the angles of a square are Ir/2, it is impossible for 5 non degenerate squares 
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with disjoint interiors to eontaln the same point. This means that ]aVoI ~< 4. 

OVo is either a closed path, or a path which begins and ends at the boundary, 

B1 O B2 U B3 U 134. If OVo is not a closed path, and it begins and ends at the 

boundary, then a similar consideration of angles shows that actually laV0] ~< 2, 

since vertices of the boundary correspond to squares on the boundary of the 

rectangle. Moreover, if the endpoints of OVo are not on the same Bj,  then we get 

the ridiculous ]OVol ~< 1. Thus we have the following 

10.1  PROPOSITION: ha Theorem 1.3, let G = (V,E) be the 1-skeleton of T. 

Suppose that for each j = 1, 2, 3, 4 and/ 'or every edge e E E whose vertices are 

in Bj  we have e C Bj.  Also suppose that every simple dosed path in G which 

separates V contains at least 5 vertices. Then no square in the tiling of Theorem 

1.3 degenerates to a point. 

PERIODIC TILINGS. If T is a triangulation of a compact cylinder, then, with the 

methods of this paper, it is not too di~eult  to obtain a square tiling of a cylinder 

whose contacts graph includes T 1, the 1-skeleton of T. This is analogous to having 

a periodic square tiling of a horizontal strip in the plane. It is worthwhile to note 

that the usual pattern of bricks in a wall shows that the periodic tiling is not 

unique, even if one normalizes the strip to have height 1 and considers two tilings 

to be the same if they differ by a translation. However, with this normalization, 

the sizes of the squares are uniquely determined, since they correspond to an 

extremal metric for T 1. 

Regarding doubly periodic tilings, there is the following 

10.2 THEOREM: Let T be a triangulation of the plane C which is invariant 

under the translations z ~ z + 1 and z --* z + i, let V be the set of vertices 

of T, and let E be the set of edges. Then there is a complex number A and 

a tiling Z = (Z~: v E V) of the plane by squares with edges paralle1 to the 

coordinate axes such that (1.1) holds and such that Z~ = Z~ + n + mA whenever 

v = u + n + m i  with n , m  E Z. 

This theorem follows from [13]. It is probably possible to prove it with the 

methods of this paper, but the author has failed to find a relatively simple proof 

along this vein. 

Again, the "bricks pattern" excludes uniqueness, but the sizes of the squares 

are probably uniquely determined. 
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NON-CONVERGENCE TO THE RIEMANN MAP. For anyone acquainted with [10], 

it is a natural question to ask whether square tilings can be used as discrete 

approximations for the conformal map from a simply connected domain to a 

rectangle. The answer is no, at least if one attempts to use the combinatorics of 

the hexagonal lattice. Figure 3 illustrates this: The tiling on the left is obtained 

as the tiling associated with the contacts graph of the tiling on the right, but the 

associated map is not close to a conformal map. 

Figure 3: Non-convergence to the Riemann map. 
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